The RNA-binding E3 ubiquitin ligase MEX-3C links ubiquitination with MHC-I mRNA degradation

نویسندگان

  • Florencia Cano
  • Helen Bye
  • Lidia M Duncan
  • Karine Buchet-Poyau
  • Marc Billaud
  • Mark R Wills
  • Paul J Lehner
چکیده

RNA-binding E3 ubiquitin ligases were recently identified, though their function remains unclear. While studying the regulation of the MHC class I (MHC-I) pathway, we here characterize a novel role for ubiquitin in mRNA degradation. MHC-I molecules provide ligands for both cytotoxic T-lymphocytes as well as natural killer (NK) cells, and play a central role in innate and adaptive immunity. MHC-I cell-surface expression is closely monitored by NK cells, whose killer immunoglobulin-like receptors encode MHC-I-specific activatory and inhibitory receptors, implying that MHC-I expression needs to be tightly regulated. In a functional siRNA ubiquitome screen we identified MEX-3C, a novel RNA-binding ubiquitin E3 ligase, as responsible for the post-transcriptional, allotype-specific regulation of MHC-I. MEX-3C binds the 3'UTR of HLA-A2 mRNA, inducing its RING-dependent degradation. The RING domain of MEX-3C is not required for HLA-A2 cell-surface downregulation, but regulates the degradation of HLA-A2 mRNA. We have therefore uncovered a novel post-transcriptional pathway for regulation of HLA-A allotypes and provide a link between ubiquitination and mRNA degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A non-proteolytic role for ubiquitin in deadenylation of MHC-I mRNA by the RNA-binding E3-ligase MEX-3C

The regulation of protein and mRNA turnover is essential for many cellular processes. We recently showed that ubiquitin--traditionally linked to protein degradation--directly regulates the degradation of mRNAs through the action of a newly identified family of RNA-binding E3 ubiquitin ligases. How ubiquitin regulates mRNA decay remains unclear. Here, we identify a new role for ubiquitin in regu...

متن کامل

A novel post-transcriptional role for ubiquitin in the differential regulation of MHC class I allotypes☆

By providing ligands for Cytotoxic T-Lymphocytes (CTL) as well as Natural Killer (NK) cells, the HLA-A/B/C MHC class I molecules (MHC-I) play a central role in both innate and adaptive immunity. In addition to CTL-mediated recognition of MHC-peptide complexes, cell surface expression of MHC-I is closely monitored by NK cells, whose killer-cell immunoglobulin-like receptors encode activatory and...

متن کامل

MEX is a testis-specific E3 ubiquitin ligase that promotes death receptor-induced apoptosis.

In the present study, we report the identification and characterization of MEX (MEKK1-related protein X), a protein with homology to MEKK1 that is expressed uniquely in the testis. MEX is comprises four putative zinc-binding domains including an N-terminal SWIM (SWI2/SNF2 and MuDR) domain of unknown function and two RING (really interesting new gene) fingers separated by a ZZ zinc finger domain...

متن کامل

RNA-binding E3 ubiquitin ligases: novel players in nucleic acid regulation.

Non-coding RNAs and their interaction with RNA-binding proteins regulate mRNA levels in key cellular processes. This has intensified interest in post-transcriptional regulation. Recent studies on the turnover of AU-rich cytokine mRNAs have linked mRNA metabolism with ubiquitination. Ubiquitin is well recognized for its role in protein regulation/degradation. In the present paper, we describe a ...

متن کامل

Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase.

Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2012